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Vector Risk Functions

Alejandro Balbás, Raquel Balbás and Pedro Jiménez-Guerra∗

Abstract. The paper introduces a new notion of vector-valued risk func-
tion, a crucial notion in Actuarial and Financial Mathematics. Both
deviations and expectation bounded or coherent risk measures are de-
fined and analyzed. The relationships with both scalar and vector risk
functions of previous literature are discussed, and it is pointed out that
this new approach seems to appropriately integrate several preceding
points of view. The framework of the study is the general setting of
Banach lattices and Bochner integrable vector-valued random variables.
Sub-gradient linked representation theorems and practical examples are
provided.

Mathematics Subject Classification (2010). 91B30, 91G80.
Keywords. Vector risk function, representation theorem, dynamic risk
measures and other examples.

1. Introduction

The notion of coherent measure of risk was introduced in the seminal paper
by Artzner et al. (1999), and since then their work has been extended in many
directions. Jouini et al. (2004) justified the use of vector random variables
to represent the final wealth provided by some portfolios, as well as the
use of “coherent vector-valued risk measures” to reflect risk levels. Cascos
and Molchanov (2007) enlarged the set of financial applications of these new
frameworks.

The interest of the approach of Jouini et al. (2004) justifies possible exten-
sions of their discussion so as to incorporate much more practical situations.
For instance, they deal with a L∞ space, whereas many scalar coherent risk
measures are defined on a larger Lp space (for example, L1 is the natural
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space to introduce the Conditional Value at Risk). In this line, Hamel and
Heyde (2010) show that the approach also makes sense in more general Lp

spaces, and Balbás and Jiménez-Guerra (2010) deal with risks and risks mea-
sures which are valued in a general Banach Lattice, rather than the classical
finite-dimensional space IRn.

Besides, while Artzner et al. (1999) understood their risk measures as initial
capital requirements that investors and managers should provide in order
to overcome negative evolutions of the market, recent literature has shown
the interest of drawing on risk measures in order to address other classical
topics, such as pricing and hedging issues (Nakano, 2004) or portfolio choice
problems (Ogryczak and Ruszczynski, 1999, Benati, 2003, Konno et al., 2005,
Rockafellar et al., 2006a, etc.). This fact has led to further studies concerning
risk analysis, and the use of convex measures (Föllmer and Schied, 2002),
consistent measures (Goovaerts et al. ,2004) or deviations and expectation
bounded risk measures (Rockafellar et al., 2006b), amongst many other kinds
of risk functions. It seems that extending the Jouini et al. (2004) analysis
makes it easier to deal with the issues above under weaker restrictions.

This paper aims to present a general framework of vector risk functions. We
introduce a “generalized vector risk function” as a map ρ : Lp (μ,E) → F ,
with μ being a probability and E and F being general Banach lattices (Meyer-
Nieberg, 1991). According to the properties of ρ, we define “coherent mea-
sures”, “deviations”, and “expectation bounded measures”. The main differ-
ence with respect to previous literature dealing with vector risk measures
is that we will not deal with “set-valued functions”. On the contrary ρ (y)
is not a complex subset of F but a single element, for every y ∈ Lp (μ,E).
This new approach significantly simplifies previous ones and retrieves suit-
able and natural properties; For instance, the simultaneous consideration of
scalar deviations or coherent expectation bounded risk measures generates
vector deviations or vector coherent expectation bounded risk functions. Si-
multaneously, we deal with a general framework, since we do not impose finite
dimensions and p is arbitrary within the interval [1,∞].

The outline of the paper is as follows. Section 2 introduces the general setting
and those previous concepts and properties that we will need throughout the
article. Section 3 introduces the generalized vector risk functions, their prop-
erties and some important relationships. Section 4 presents Representation
Theorems. We have followed the idea of Rockafellar et al. (2006b), in the
sense that we represent the measure ρ “as an envelope of its sub-gradients”,
which, as long as E satisfies the Radon-Nikodym property (Diestel and Uhl,
1977), are elements of Lq (μ,E

∗); q being the conjugate of p and E∗ denoting
the dual space of E. Section 5 presents some practical examples and financial
applications of vector risk functions, with special focus on dynamic risk mea-
sures. Both, scalar and vector dynamic risk measures are particular cases of
the vector risk functions that we will introduce in the third section. Section
6 concludes the article.
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2. Preliminaries and notations

Throughout the paper, E, F , E+ and F+ will denote two Banach lattices and
their non-negative cones respectively.1 Their dual Banach lattices and cones
will be represented by E∗, F ∗, E∗

+ and F ∗
+, and 〈e∗, e〉 will be “the usual

product” of e∗ ∈ E∗ and e ∈ E. If e1, e2 ∈ E and e1 − e2 ∈ E+ then we will
write e1 ≥ e2. Similar ideas apply if F plays the role of E.

L (E,F ) (L+ (E,F )) will be the set of linear maps Λ : E → F that are con-
tinuous (non-negative, i.e., Λ(e) ≥ 0 whenever e ≥ 0). Every Λ ∈ L+ (E,F )
is continuous (Meyer-Nieberg, 1991).

(Ω,F , μ) will be a probability space composed of the set Ω, the σ-algebra F
and the probability measure μ. p ∈ [1,∞] and q ∈ [1,∞] will be conjugate
values, i.e., 1/p+1/q = 1. If p < ∞ then Lp (μ,E) will represent the Banach
space of those Bochner integrable (Diestel and Uhl, 1977) functions y : Ω → E
such that

∫
Ω
‖y (ω)‖p dμ (ω) < ∞, endowed with the usual norm

‖y‖p =

(∫
Ω

‖y (ω)‖p dμ (ω)

) 1
p

.

Similarly, L∞ (μ,E) will be the Banach space of E-valued essentially bounded
and integrable functions, endowed with the norm

‖y‖∞ = ess− sup {‖y (ω)‖ ;ω ∈ Ω}
ess−sup denoting the essential supremum. It is well known that Lp1 (μ,E) ⊂
Lp2 (μ,E) whenever p1 ≥ p2 and the natural inclusion is continuous. If p < ∞
and E∗ satisfies the Radon-Nikodym property then, Lq (μ,E

∗) is the dual
space of Lp (μ,E). Henceforth we will assume that E and E∗ satisfy the
Radon-Nikodym property (Diestel and Uhl, 1977).

If G denotes a sub-σ-algebra of F and μG is the restriction of μ to G,
then Lp (μG , E) is a closed subspace of Lp (μ,E). In such a case IE (y |G ) ∈
Lp (μG , E) for every y ∈ Lp (μ,E), IE (y |G ) denoting the conditional expec-
tation of y with respect to G.
An interesting particular example is G = {Ø,Ω}, in which case Lp (μG , E) and
E may be identified. Indeed, if there is no confusion, for every y0 ∈ E we will
also represent by y0 the constant element of Lp (μ,E) given by y (ω) = y0
a.s. Furthermore, IE (y |G ) will be represented by IE (y) =

∫
Ω
ydμ ∈ E, for

every y ∈ Lp (μ,E).

3. Generalized vector risk functions

Definition 3.1. Every
ρ : Lp (μ,E) → F

1Most of the properties here stated would still hold if E or F were ordered Banach spaces.
However we think that imposing E and F to be Banach lattices the exposition is signifi-
cantly simplified.
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will be called Vector Risk Function (V RF ). Furthermore, ρ is said to be:

a) (Λ,G)-Translation invariant, if G denotes a sub-σ-algebra of F ,

Λ : Lp (μG , E) −→ F

is linear and continuous, and ρ (y + y0) = ρ (y) − Λ (y0) holds for every y ∈
Lp (μ,E) and every y0 ∈ Lp (μG , E).2 If G = {Ø,Ω} (i.e., Lp (μG , E) ≈ E)
and Λ ∈ L+ (E,F ) , then we will merely say that ρ is Λ-translation invariant.

b) Positively homogeneous, if ρ (αy) = αρ (y) holds for every real number
α > 0 and every y ∈ Lp (μ,E).

c) Sub-additive, if ρ (y1 + y2) ≤ ρ (y1) + ρ (y2) holds for every y1, y2 ∈
Lp (μ,E).

d) Decreasing, if ρ (y2) ≤ ρ (y1) whenever y1, y2 ∈ Lp (μ,E) and y2 ≥ y1 a.s.

e) (Λ,G)-Mean dominating, if G is a sub-σ-algebra of F , Λ : Lp (μG , E) −→
F is linear and continuous, and ρ (y) ≥ −Λ (IE (y |G )) holds for every y ∈
Lp (μ,E). �

Definition 3.2. The V RF ρ is said to be:

a) A (Λ,G)-expectation bounded risk measure, if G is a sub-σ-algebra of F ,
Λ : Lp (μG , E) −→ F is linear and continuous, and ρ is (Λ,G)-translation in-
variant, positively homogeneous, sub-additive, and (Λ,G)-mean dominating.

b) A (Λ,G)-coherent risk measure, if G is a sub-σ-algebra of F , Λ : Lp (μG , E)
−→ F is linear and continuous, and ρ is (Λ,G)-translation invariant, posi-
tively homogeneous, sub-additive, and decreasing.

c) A G-deviation if G is a sub-σ-algebra of F and ρ is (Λ,G)-expectation
bounded with Λ = 0. �

Remark 3.3. Definition 3.2. above extends the notion of scalar coherent
risk measure (Artzner et al., 1999), scalar expectation bounded risk mea-
sure (Rockafellar et al., 2006b), and scalar deviation measure (Rockafellar et
al., 2006b). Scalar measures arise when E = F = IR, G = {Ø,Ω}, and Λ is
the identity map. �

Proposition 3.4. Let ρ be a V RF .

a) If ρ is positively homogeneous then ρ (0) = 0.

b) If ρ is (Λ,G)-expectation bounded or (Λ,G)-coherent for some (Λ,G) then
ρ (y0) = −Λ (y0) for every y0 ∈ Lp (μG , E).3

2Following Artzner et al. (1999), if Λ is onto we can consider that, given y ∈ Lp (μ,E), any

y0 ∈ Lp (μG , E) such that Λ (y0) = ρ (y) may be understood as a final wealth or pay-off

that must be guaranteed by the initial capital requirements. Indeed, one has that

ρ (y + y0) = ρ (y)− Λ (y0) = 0,

so the global risk vanishes with the additional wealth y0.
3In particular, ρ (y0) = 0 for every G-deviation ρ and every y0 ∈ Lp (μG , E). Notice that

it is sufficient to impose ρ to be (Λ,G)-translation invariant and positively homogeneous.
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Proof. To prove a) notice that ρ (0) = ρ (α0) = αρ (0), so ρ (0) �= 0 would
lead to α = 1 for every positive α.

To prove b) notice that ρ (y0) = ρ (0 + y0) = ρ (0)− Λ (y0) = −Λ (y0). �

The following result establishes the existence of a one to one mapping between
deviations and expectation bounded risk measures.

Proposition 3.5. Let G be a sub-σ-algebra of F and Λ : Lp (μG , E) −→ F
linear and continuous. The relationship

ρ → D = ρ+ Λ ◦ IE (− |G )

establishes a one to one correspondence between the set of (Λ,G)-expectation
bounded risk measures and the set of G-deviations.

Proof. If ρ is a (Λ,G)-expectation bounded risk measure then set D = ρ +
Λ ◦ IE (− |G ) and D is trivially (0,G)-translation invariant, positively homo-
geneous and sub-additive. To show that D is (0,G)-mean dominating, take
y ∈ Lp (μ,E). Then,

D (y) = ρ (y) + Λ ◦ IE (y |G ) ≥ 0

because ρ is (Λ,G)-mean dominating and ρ (y) ≥ −Λ ◦ IE (y |G ).

Conversely, suppose that D is a deviation and set ρ = D −Λ ◦ IE (− |G ). ρ is
clearly (Λ,G)-translation invariant, positively homogeneous and sub-additive.
To show that ρ is (Λ,G)-mean dominating, take y ∈ Lp (μ,E), and one has
that

ρ (y) = D (y)− Λ ◦ IE (y |G ) ≥ −Λ ◦ IE (y |G )

because D (y) ≥ 0. �

4. Representation theorems

Artzner et al. (1999) and Jouini et al. (2004) stated Representation Theorems
of “their coherent risk measures” (scalar and vector, respectively) by using
duality properties and μ-continuous finitely or σ-finitely additive measures on
the measurable space (Ω,F). The extensions of Hamel and Heyde (2010) and
Balbás and Jiménez-Guerra (2010) also led to analogous (but more general)
Representation Theorems. However, Rockafellar et al. (2006b) represented
“their (real-valued) expectation bounded risk measures” by using L2 (μ, IR),
which may be identified with its dual space. Here we draw on the duality
(Lq (μ,E

∗) , Lp (μ,E)) and follow the ideas of the Rockafellar et al. (2006b)
in order to represent the V RF by “some kind of envelope generated by its
sub-gradients”.

Lemma 4.1. Suppose that G is a sub-σ-algebra of F , p < ∞ and F = IR. If
D : Lp (μ,E) → IR is a real valued and continuous G-deviation then there
exists Δ ⊂ Lq (μ,E

∗) satisfying the following conditions:

a) Δ is convex and σ (Lq (μ,E
∗) , Lp (μ,E))-compact.
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b) The equality

D (y) = Max

{
−
∫
Ω

〈z∗ (ω) , y (ω)〉 dμ (ω) ; z∗ ∈ Δ

}
(4.1)

holds for every y ∈ Lp (μ,E).

Proof. Since E∗ satisfies the Radon-Nikodym property we have that
Lq (μ,E

∗) is the dual space of Lp (μ,E). Besides, if

Δ1 =

{
z∗ ∈ Lq (μ,E

∗) ;D (y) ≥
∫
Ω

〈z∗ (ω) , y (ω)〉 dμ (ω) , ∀y ∈ Lp (μ,E)

}

then it may be easily proved that Δ1 is convex and σ (Lq (μ,E
∗) , Lp (μ,E))-

closed. Furthermore, since Lq (μ,E
∗) is the dual space of Lp (μ,E) and D is

continuous, Theorem 2.4.9 in Zalinescu (2002) implies that Δ1 is
σ (Lq (μ,E

∗) , Lp (μ,E))-compact, along with the equality

D (y) = Sup

{∫
Ω

〈z∗ (ω) , y (ω)〉 dμ (ω) ; z∗ ∈ Δ1

}

for every y ∈ Lp (μ,E). Hence, the result trivially follows if one takes Δ =
−Δ1. �

Remark 4.2. It is worth pointing out that every z∗ ∈ Δ satisfies

IE (z∗ |G ) = 0. (4.2)

Indeed, Proposition 3.4.b) and the proof of Lemma 4.1. imply that

−
∫
Ω

〈z∗, y0〉 dμ ≤ D (y0) = 0

holds for every y0 ∈ Lp (μG , E). Thus, if −y0 replaces y0 we have∫
Ω

〈z∗, y0〉 dμ = 0. �

Lemma 4.3. Suppose that G is a sub-σ-algebra of F , p < ∞, F = IR and
Λ : Lp (μG , E) → IR is linear and continuous. If ρ : Lp (μ,E) → IR is a real
valued (Λ,G)-expectation bounded and continuous risk measure then there
exist Δ ⊂ Lq (μ,E

∗) and ΛG ∈ Lq (μG , E
∗) satisfying Condition a) above and

ρ (y) = Max

{
−
∫
Ω

〈z∗ (ω) , y (ω)〉 dμ (ω) ; z∗ ∈ Δ

}
−
∫
Ω

〈ΛG (ω) , y (ω)〉 dμ (ω)

(4.3)
holds for every y ∈ Lp (μ,E). Furthermore, z∗ (ω) + ΛG ≥ 0 a.s. for every
z∗ ∈ Δ if and only if ρ is (Λ,G)-coherent.

Proof. Proposition 3.5. and Expression ((4.1)) trivially imply the existence
of Δ ⊂ Lq (μ,E

∗) satisfying Condition a) above and such that

ρ (y) = Sup

{
−
∫
Ω

〈z∗ (ω) , y (ω)〉 dμ (ω) ; z∗ ∈ Δ

}
− Λ (IE (y |G ))
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for every y ∈ Lp (μ,E). Thus, if ΛG ∈ Lq (μ,E
∗) is such that∫

Ω

〈ΛG (ω) , y (ω)〉 dμ (ω) = Λ (IE (y |G ))

for every y ∈ Lp (μ,E) then ((4.3)) becomes obvious.

Suppose that z∗ (ω) + ΛG ≥ 0 a.s. for every z∗ ∈ Δ . Then, take y1, y2 ∈
Lp (μ,E) with y2 ≥ y1 a.s. and

−
∫
Ω

〈z∗ (ω) + ΛG (ω) , y1 (ω)〉 dμ (ω) ≥ −
∫
Ω

〈z∗ (ω) + ΛG (ω) , y2 (ω)〉 dμ (ω)

trivially holds. Thus, ρ is (Λ,G)-coherent due to ((4.3)).

Conversely, suppose that μ
({

ω ∈ Ω; z∗ (ω) + ΛG (ω) /∈ E∗
+

})
> 0 for some

z∗ ∈ Δ. Then, there exists y ∈ Lp (μ,E), y ≥ 0 a.s., such that∫
Ω

〈z∗ (ω) + ΛG (ω) , y (ω)〉 dμ (ω) < 0.

Hence, ((4.3)) leads to ρ (y) > 0, i.e., according to Proposition 3.4.a), ρ (y) >
ρ (0), and ρ is neither decreasing nor (Λ,G)−coherent. �

Remark 4.4. Notice that {ΛG} + Δ may play the role of Δ in the latter
lemma, in which case, we would obtain the existence of Δ, convex and
σ (Lq (μ,E

∗) , Lp (μ,E))-compact, satisfying

ρ (y) = Max

{
−
∫
Ω

〈z∗ (ω) , y (ω)〉 dμ (ω) ; z∗ ∈ Δ

}
(4.4)

for every y ∈ Lp (μ,E), and ρ is (Λ,G)-coherent if and only if z∗ (ω) ≥ 0 a.s.
for every z∗ ∈ Δ. Notice also that ((4.2)) leads to the equality

IE (z∗ |G ) = ΛG

for every z∗ ∈ Δ. �

Theorem 4.5 (Representation Theorem for Deviations). Suppose G is a sub-
σ-algebra of F and p < ∞. If D : Lp (μ,E) → F is a continuous G-deviation
then for every f∗ ∈ F ∗

+ there exists Δf∗ ⊂ Lq (μ,E
∗) satisfying the following

conditions:

a) Δf∗ is convex and σ (Lq (μ,E
∗) , Lp (μ,E))-compact.

b) The equality

f∗ ◦D (y) = Max

{
−
∫
Ω

〈z∗ (ω) , y (ω)〉 dμ (ω) ; z∗ ∈ Δf∗

}

holds for every y ∈ Lp (μ,E).

c) IE (z∗ |G ) = 0 holds for every z∗ ∈ Δf∗ .

Proof. It is a trivial consequence of Lemma 4.1. and Remark 4.2., if one
takes into consideration that f∗ ◦D satisfies the properties of an IR−valued
G−deviation. �
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Lemma 4.6. If G is a sub-σ-algebra of F , Λ : Lp (μG , E) −→ F is linear and
continuous, and ρ : Lp (μ,E) → F is a (Λ,G)-expectation bounded V RF ,
then ρ is (Λ,G)-coherent if and only if f∗ ◦ρ is decreasing for every f∗ ∈ F ∗

+.

Proof. The result is clear if one bears in mind that F is a Banach lattice and,
thus, for f1, f2 ∈ F we have that f1 ≤ f2 if and only if 〈f∗, f1〉 ≤ 〈f∗, f2〉 for
every f∗ ∈ F ∗

+. �

Theorem 4.7 (Representation Theorem for Expectation Bounded V RF ).
Suppose that G is a sub-σ-algebra of F , Λ : Lp (μG , E) −→ F is linear and
continuous and p < ∞. If ρ : Lp (μ,E) → F is a (Λ,G)-expectation bounded
and continuous V RF then for every f∗ ∈ F ∗

+ there exist Δf∗ ⊂ Lq (μ,E
∗)

and ΛG ∈ Lq (μG , E
∗) satisfying the following conditions:

a) Δf∗ is convex and σ − (Lq (μ,E
∗) , Lp (μ,E))-compact.

b) The equality

f∗ ◦ ρ (y) = Max

{
−
∫
Ω

〈z∗ (ω) , y (ω)〉 dμ (ω) ; z∗ ∈ Δf∗

}

holds for every y ∈ Lp (μ,E).

c) IE (z∗ |G ) = ΛG for every z∗ ∈ Δf∗ .

Moreover, ρ is (Λ,G)-coherent if and only if z∗ ≥ 0 a.s. for every f∗ ∈ F ∗
+

and every z∗ ∈ Δf∗ .

Proof. It is a trivial consequence of Lemma 4.6. and Remark 4.4., if one
takes into consideration that f∗ ◦ ρ satisfies the properties of an IR−valued
(f∗ ◦ Λ,G)-expectation bounded risk measure. �

5. Examples and applications

Example 1. It is worth pointing out that one can obtain vector risk functions
by simultaneously considering several scalar risk functions. One might con-
sider that this natural property should obviously hold, but recall that this
is false for the alternative approach dealing with set-valued vector risk mea-
sures (Jouini et al., 2004, Cascos and Molchanov, 2007, Balbás and Jiménez-
Guerra, 2010, or Hamel and Heyde, 2010).

More generally, consider the set of Banach lattices E and {Fj}nj=1 where E

and E∗ satisfy the Radon-Nikodym property, the sub-σ-algebra G of F , the
family of continuous linear maps Λj : Lp (μG , E) → Fj , and the risk functions
ρj : Lp (μ,E) → Fj , j = 1, 2, . . . , n. Take

ρ : Lp (μ,E) →
n∏

j=n

Fj
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as usual. Then, if each ρj is a G-deviation so is ρ, and if each ρj is (Λj ,G)-
expectation bounded (respectively, (Λj ,G)-coherent) then ρ is (Λ,G)-expec-
tation bounded (respectively, (Λ,G)-coherent), where

Λ (y0) = (Λj (y0))
n
j=1 ∈

n∏
j=n

Fj

for every y0 ∈ Lp (μG , E).

Example 2. Jouini et al. (2004) provided interesting situations making it
quite convenient to consider vector-valued random variables to represent final
wealths (or pay-offs) and risk levels (see also Cascos and Molchanov, 2007).
For instance, if a portfolio were diversified amongst several currencies and
transaction costs made it inefficient to compensate possible losses in a given
currency with those profits generated in the remaining ones, then we could
take E = IRn and F = IRm with m ≤ n. Then, y ∈ Lp (μ,E) would indicate
the pay-off of each sub-portfolio associated with the corresponding currency,
and ρ (y) could indicate the capital requirement to overcome the risk, cur-
rency by currency. Of course, m may be less than n because some currencies
may be liquid enough so as to accept compensations, and G = {Ø,Ω}.

The arguments above also apply in different situations non-necessarily related
to currencies. Mainly, one needs a global portfolio that may be divided into
sub-portfolios in such a way that it is expensive to compensate among them
all due to imperfections.

Example 3.(Dynamic risk measures) Dynamic risk measures are very impor-
tant in Actuarial and Financial Mathematics because prices, risks and strate-
gies evolve in a stochastic framework. There are several approaches dealing
with the notion of dynamic measure of risk, though the most usual one is that
in Frittelli and Rosazza Gianin (2004), Cheridito et al. (2005) or Roorda and
Schumacher (2011), among others. Thus, consider the closed interval [0, T ]
representing a time period and a set T ⊂ [0, T ] representing the trading
dates and such that {0, T} ⊂ T . The arrival of information is given by the
filtration (Gt)t∈T such that G0 = {Ø,Ω} and GT = F . For every adapted
stochastic process (St)t∈T such that St ∈ L2 (μGt

, IR), usually representing
an agent wealth (or loss) at every date t ∈ T , one can fix s < t ∈ T and then,
define a risk function ρ(s,t) : L2 (μGt

, IR) → L2 (μGs, IR). Actually the system(
ρ(s,t)

)
s<t∈T is a dynamic risk measure, and the analysis fits in our much

more general approach if one takes E = IR, F = L2 (μGs, IR), G = Gs, and
Λ : L2 (μGs, IR) → L2 (μGs, IR) given by the identity map. Thus, our general
definitions of Section 3 and the Representation Theorems of Section 4 apply
for dynamic measures of risk. Notice finally that the role of E = IR may
be plaid by other vector space, and consequently the approach of this paper
applies for both scalar and vector dynamic risk measures. As far as we know,
the notion of vector dynamic risk measure had not been introduced yet in
the literature.
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Example 4.(Optimizing vector risk functions) The optimization of scalar
measures of risk is a very important problem in Actuarial and Financial
Mathematics because many practical decisions must be optimal. For in-
stance, Benati (2003) and Konno et al. (2005) study portfolio choice problems,
Schweizer (1995) and Nakano (2004) deal with pricing issues, Balbás et al.
(2009) analyze optimal reinsurance problems, and Rockafellar et al. (2006a)
and Balbás et al. (2010b) deal with market equilibrium topics.

In general, the minimization of scalar risk measures is complex in practice be-
cause risk measures are not differentiable functions, and the usual Lagrangian
linked methods do not apply. Thus, most of the papers above must develop
special methods that solve their concrete problem. Nevertheless, there are
recent papers whose focus is on the minimization of risk, and they pro-
vide general optimization techniques (Balbás et al., 2010a, among others).
The representation theorems play a crucial role in the development of these
general methodologies, since they allow us to find equivalent differentiable
optimization problems.

Vector optimization problems are also usual in practical applications. If they
are convex, which always holds if one minimizes vector risk measures, then,
the most important ways to solve them are the scalarization method and
the balance space approach (Galperin, 1997). In both cases, the Representa-
tion Theorems of Section 4 permit us to extend the findings of Balbás et al.
(2010a), in such a way that the minimization of vector risks become a dif-
ferentiable problem, and then, standard Lagrangian linked and saddle point
linked necessary and sufficient optimality conditions may be given. We will
not present a detailed analysis because this is a straightforward extension of
Balbás et al. (2010a), if one bears in mind Theorems 4.5. and 4.7.

6. Conclusions

The paper has introduced a new notion of vector risk function and concepts
such as vector deviation, vector expectation bounded risk measure or vector
coherent risk measure. Relationships amongst them have been analyzed. In
this sense, the generalized vector risk functions may be used to provide initial
capital requirements as well as to deal with most of the classical topics (pric-
ing, hedging, portfolio choice, etc.). The link with dynamic risk functions or
vector risk functions studied in previous literature has been discussed, and it
has been pointed out that this new approach simplifies many theoretical and
practical problems, since we do not deal with set-valued risks. On the con-
trary, the risk of every (vector) pay-off is a single vector. Practical examples
have been illustrated and sub-gradient linked representation theorems have
been given.
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[12] E.A. Galperin, Pareto analysis vis-à-vis balance apace approach in multiobjec-
tive global optimization. Journal of Optimization Theory and Applications 93
(1997), 3, 533-545.

[13] M. Goovaerts, R. Kaas, J. Dhaene and Q. Tang, A new classes of consistent
risk measures. Insurance: Mathematics and Economics 34 (2004), 505-516.

[14] A. Hamel and F. Heyde, Duality for set-valued measures of risk. SIAM Journal
of Financial Mathematics 1 (2010), 66-95.

[15] E. Jouini, M. Meddeb and N. Touci, Vector-valued coherent risk measures.
Finance & Stochastics 8 (2004), 531-552.

[16] H. Konno, K. Akishino and R. Yamamoto, Optimization of a long-short portfo-
lio under non-convex transaction costs. Computational Optimization and Ap-
plications 32 (2005), 115-132.

[17] P. Meyer-Nieberg, Banach lattices. Springer-Verlag. New York (1991).
[18] Y. Nakano, Efficient hedging with coherent risk measure. Journal of Mathemat-

ical Analysis and Applications 293 (2004), 345-354.
[19] W. Ogryczak, and A. Ruszczynski, From stochastic dominance to mean risk

models: Semideviations and risk measures. European Journal of Operational
Research 116 (1999), 33-50.

[20] B. Roorda and J.M. Schumacher, The strictest common relaxation of a family
of risk measures. Insurance: Mathematics and Economics 48 (2011), 29-34.

11



          

[21] R.T. Rockafellar, S. Uryasev and M. Zabarankin, Optimality conditions in port-
folio analysis with general deviations measures. Mathematical Programming,
Ser. B, 108 (2006a), 515-540.

[22] R.T. Rockafellar, S. Uryasev and M. Zabarankin, Generalized deviations in risk
analysis. Finance & Stochastics 10 (2006b), 51-74.

[23] M. Schweizer, Variance-optimal hedging in discrete time. Mathematics of Op-
erations Research 20 (1995), 1, 1-32.

[24] C. Zalinescu, Convex analysis in general vector spaces. World Scientific Pub-
lishing Co,(2002).

Alejandro Balbás
University Carlos III of Madrid.
CL. Madrid 126.
28903 Getafe, (Madrid)
Spain
e-mail: alejandro.balbas@uc3m.es

Raquel Balbás
University Complutense of Madrid.
Department of Actuarial and Financial Economics.
Somosaguas Campus.
28223 Pozuelo de Alarcón, (Madrid)
Spain.
e-mail: raquel.balbas@ccee.ucm.es

Pedro Jiménez-Guerra
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